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Surface Tension Calculations for 
Liquid Metals 
J.-P. BADlALl and A. LEPAPE 
Ph pique des Liquides et Electrochernie. Universit.4 Pierre et Marie Curie, 
4, Place Jussieu 75230 Paris, Cedex 05 France. 

and 

J. GOODISMAN 
Department of Chemistry, Syracuse University. New York 13210 U.S.A. 

We present a class of models for the surface of a liquid metal, which may be part of an electro- 
chemical interface. The particles of the system, for the purpose of derivation of thermodynamic 
properties, are the charged ion cores, while the energy of the electrons is evaluated using the 
electron density functional formalism, previously principally applied to solids. An expression 
for the surface energy U’, defined as the energy required to create unit area of surface by separ- 
ation of a volume of homogeneous metal into two parts, is derived (Eqs. 18-20). The surface 
tension j. is obtained by differentiating the Helmholtz free energy with respect to the area of 
the system, keeping volume and particle number constant (Eqs. 27-37). The surface tension 
is also equal to the difference between the free energy of the system containing a surface and 
the free energy of a reference system. It thus defines a surface energy through the Gibbs-Helm- 
holtz equation, and this surface energy IS shown to be identical to Us. 

The expressions for U’and yare made explicit (Eqs. 45-57) by insertion of particular assump- 
tions for the ion-density profile, the electron-density profile, the interionic interaction and pair 
distribution function, and the electronic energy. Only information about bulk liquid metal is 
used. The parameter in the electron-density profile is obtained by minimizing the surface 
energy. The simplest assumption for the interionic interaction, hard-sphere and Coulombic 
repulsions, requires a choice for the hard-sphere diameter, which is made such that the pressure 
of bulk metals is given correctly (52-55).  For the alkali metals, the surface tension calculated 
from this model is about half the experimental value in each case, while calculated surface 
energies are too high (4 too high for Cs, but three times too high for Li). For the electrical poten- 
tial difference between the inside and the outside of a metal, and for the electrochemical potential, 
agreement with experiment is good. The main reason for the disagreements in the other pro- 
perties is traced to the simple form used for the ion pair distribution function. 
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244 J.-P. BADIALI, A. LEPAPE A N D  J. GOODISMAN 

I NTRO D U CTlO N 

The electrochemical interface consists of a metal in contact with an electro- 
lyte. In the case of a polarisable electrode, changes in properties of the inter- 
face due to changes in the potential difference across it are interpreted to 
give information about the distribution of components of the electrolyte.' 
The metal, usually Hg, is taken as a structureless charged surface. To in- 
vestigate whether the metal's structure indeed makes no contribution, a 
model for the surface of liquid metal is needed, which can give surface 
tension, as well as electrical properties, for different states of charge. 

A statistical mechanical calculation of surface tension requires, first of all, 
the interaction potentials, which one can derive from the properties of the 
homogeneous phases. The interionic potential for a liquid metal represents 
an effective interaction, which includes the effects of the electron gas. In the 
presence of a surface, the electronic wave functions differ markedly from 
plane waves, and the effective interionic potential appropriate to the homoge- 
neous phase cannot be used. We will assume only that the bare electron-ion 
pesudo-potential remains valid in the in t e r f a~e . '~  Clearly, it is a more 
complex problem to calculate the surface tension for a simple metal than for 
a non-metal. 

Two approaches suggest themselves. The first is based on the electron 
density functional formali~m,~ and has principally been applied to solids. 
Lang and Kohn2 use this theory to calculate electron density profiles for 
alkali metals with the ions being represented by a jellium model. The cal- 
culated surface energies compare well to the surface tensions of the liquids 
extrapolated to 0°K but become negative for dense metals. The problem can 
be corrected by treating the interaction between ions and electrons in detail. 
Lang and Kohn assume that the difference between the int$raction energy 
for a lattice of ions and the corresponding quantity for the jellium model, 
can be calculated by first-order perturbation theory. The known lattice 
structure of the solid is used in carrying out this calculation, and the electron 
density profile associated with the jellium is maintained. 

For the calculation of work functions J. R. Smith6 employs a similar 
scheme. However, the electron density profile is never calculated, but given 
an assumed form, with parameters chosen to optimize the surface energy 
calculated for the jellium model. Reasonable results are obtained. Using 
Smith's method. G. Paasch and collaborators7 calculated work functions, 
determining the electron density profile by taking into account a lattice of 
ions, including a relaxation of the position of the last lattice plane. This 
gives profiles which differ noticeably from Smith's. Allen and Rice [7a] 
have used the Lang-Kohn formalism to discuss the ion-density profile for 
a liquid metal surface. 

A second approach, specific to the liquid state, has been proposed by 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



SURFACE TENSION OF LIQUID METALS 245 

R. E v a n ~ . ~ , ~  It involves the extension to a surface region of a pseudo-ion 
model which is valid for homogeneous systems. The electron density pro- 
file is here taken as fixed; it must be determined by the Smith or Lang-Kohn 
models, i.e., independently of the Evans theory. Evans’ theory gives measur- 
able properties of the correct size. However, the fact that the electronic 
profile is not determined in a self-consistent manner, and the difficulty of 
defining a surface potential, represent two disadvantages from the point of 
view of our intended application. The surface potential is a natural quantity 
in a density functional treatment, but calculation of surface tension presents 
new problems. 

We propose a class of models which, on one hand, employ a density 
functional formalism for the conduction electrons, and, on the other hand, 
specifically take into account the structure of the liquid state through the 
interionic correlation function. In Section I, we derive such models from the 
partition function for a system of electrons and ions. This permits us to make 
explicit our general assumptions. The electron density functional is intro- 
duced in Section 11. In Section 111, we derive formulas for surface tension and 
surface energy, taking into account the effect of changing surface area on 
the electron density profile. The relation between surface tension and 
surface energy, and the determination of parameters in a simple model, are 
discussed in Section IV. In Section V we present some results for the alkali 
metals in the absence of external field. Some discussion follows in Section VI. 
In an Appendix, the effect of using a more complex density profile is shown. 

I DERIVATION OF THE MODEL 

Let us consider a system of heavy charged particles and electrons, the 
number of each being fixed. The properties of the system at fixed temperature 
and volume can be derived from the canonical partition function which in- 
volves a sum over states for the electrons, described by quantum mechanics, 
and integrations over momenta and configuration space (r) for the heavy 
particles, described by classical mechanics, and referred to here as ions (see 
below). 

According to the Born-Oppenheimer separation of electronic and nuclear 
motions,’ the electronic Schrodinger equation is considered to be solved 
for each ionic configuration r, giving a series of eigenenergies Ei with 
degeneracies or multiplicities gi . The Hamiltonian in the Schrodinger 
equation includes the potential due to the ions, so that Ei includes the ion- 
electron interaction. The ion-ion interactions, represented by F z ,  must be 
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246 J.-P. BADIALI, A. LEPAPE A N D  J. GOODISMAN 

added to this Ei, and so must the ionic kinetic energy, Pi/2M for each ion 
k ,  with M being the ionic mass. Of course, 1 = l/kT. The integrations over 
ionic momenta are trivial in (l), yielding a factor of ( 2 7 ~ M / h ~ p ) ~ / ~  for each 
ion. 

Next, we assume that, for every ionic configuration r of importance, the 
difference between the lowest and next lowest electronic energies is large 
compared to kT, so that the sum of (1) is reduced to the term for i = 0. The 
ground state being non-degenerate, 

According to the theorem of Kohn and Hohenberg," the ground state 
energy for each is a functional of the electron density n ;  if the functional 
were known, one could determine the electron density and Eo by a varia- 
tional procedure. The energy E ,  depends on the ionic configuration directly 
through the ion-electron term in the Hamiltonian, and indirectly, since it 
is the eigenvalue of a Hamiltonian (for the electronic Schrodinger equation) 
which depends on the ionic configuration. Similarly for the density-func- 
tional formalism, we separate out direct and indirect (through n) depend- 
ences of Eo on r, writing 

Eo = EoCn(r), rI = C Fi(n(r), Ri) + RoCn(r)I (3) 
i 

Here Ri gives the position of ion i. Because of the equivalence of the ions, n 
actually depends on the ionic distribution p ( ' )  rather than the configuration. 
If p ( ' )  displays planar symmetry, so will n. 

The heavy particles which we refer to as ions will actually represent the 
ionic cores of the liquid metal, and the electrons will be the conduction 
electrons only. Since the ionic cores themselves involve electrons, the elec- 
tronic energy cannot really be treated as we have done. We will assume, how- 
ever, that one may invoke a first-order pseudopotential theory and write 
Eo as in Eq. (3), with Fo(n(T)) representing the properties of the gas of con- 
duction electrons alone and Fl (n(r), Ri)  representing the interaction (via a 
pseudopotential) of the electron gas with the ion core located at R i .  Below 
we will use, as did Lang and Kohn2 and Evans: an Ashcroft-type pseudo- 
potential." Mathematical manipulations are easy with this potential, 
which involves only the core radius R,, and describes at least qualitatively 
certain important physical properties.' Our model could, of course, be 
used with pseudopotentials of other forms. Cohen and Heine12 have shown 
how pseudopotentials can be parameterized on the basis of experimental 
results. Their numerous tabulations demonstrate the range of variation of 
the parameters. 
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SURFACE TENSION OF LIQUID METALS 247 

If we limited ourselves strictly to a first-order theory, Fz[r] would be 
simply the direct interionic interaction, composed of a short-range core 
repulsion and a Coulombic repulsion. The core radius required to represent 
the former by a hard-sphere interaction would be d z 2R,. For the homog- 
eneous phase, the first-order pseudopotential theory gives good approximate 
results for certain thermodynamic proper tie^.'^ It is quite incapable of cor- 
rectly describing structural properties. Rather, it is the second-order terms, 
modifying the effective interionic potential, which determine the atomic 
arrangements. 

have discussed the derivation of an effective local 
pair potential for the ions starting from the self-consistent energy (a sum 
of one-electron energies for the conduction electrons, the bare-ion electro- 
static repulsion, and a correction for double counting of interelectronic 
repulsion). The effects of the ion-electron pseudopotential (bare-ion poten- 
tial plus screening), included to second order, lead to an oscillatory ionic 
pair potential. Waseda and S u z ~ k i , ' ~  starting with structural data for the 
liquid alkali metals, derived interionic pair potentials by solving the Born- 
Green-Yvon equation. The potentials include long-range oscillatory parts, 
but it was noted that, at temperaturesjust above the melting point, the hard- 
sphere potentials as parameterized by Ashcroft and LeknerI6 led to structure 
factors nearly the same as those from the more complicated potentials. 

In the presence of a surface, it is evident that the second-order terms must 
lead to an effective interaction which is anisotropic and, being density- 
dependent, depends on the ionic positions. To simplify our model, however, 
we shall represent the ion-ion, as well as the ion-electron, interaction by iso- 
tropic local potentials which do not depend on electron density. In his 
treatment, Evans8* l 7  took this density dependence into account. However, 
each ion was associated with electron density of equal and opposite charge, 
and the full electronic energy could be written as XFl. This would be in- 
convenient in treating an external electric field (representing the effect of 
the electrolyte), which changes the number of electrons for a fixed number of 
ions. 

An external electric field will give rise to a term in the electronic Hamil- 
tonian and hence in the density functional, as well as to a potential for the 
ions. Including the former in F ,  and the latter in F1, we have our partition 
function : 

Various authors' 

Q = N !  (z)3"2 ph2 /dT exp{ -P[F,(n(r)) + C i F,(n(r), Ri) 
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248 J.-P. BADIALI, A. LEPAPE AND J. GOODISMAN 

In (4), we have made explicit the fact that, in the present level of approxima- 
tion, the interionic interaction is by pairs. (The prime on the summation 
indicates it includes only distinct pairs.) Thus we will not treat induction- 
type interactions, which are not pairwise additive. 

In addition to an interionic potential, we need an assumption for the 
interionic correlations. We will suppose that the probability of finding 
simultaneously an ion i at R, and an i o n j  at R, may be written 

P‘2’(R, R2) = P‘1’(Rl)P‘2’(R,)S(Rl, R2) ( 5 )  
with p(’)(R2) giving the probability of finding an ion at R1 and g the radial 
distribution function corresponding to a homogeneous fluid. 

I I  DENSITY FUNCTIONAL THEORY 

The electronic energy will be written as a functional of the electronic density. 
In addition to the pseudopotential interaction with the ion cores, it includes 
the commonly-used expressions’ 8 ~ 1 9  for kinetic energy, exchange energy, 
correlation energy, inhomogeneity energy, and interelectronic repulsion. 
In atomic units, which we shall be using from this point, 

F,(n(T)) = lik n5’3 dz - li, s n 4 i 3  dz s 
- 1 2 I(0.115 - 0.031 In r,)n dz + (i) Sn-’(Vn)’ dT 

The unit of energy is 27,2096 eV, the unit of length the Bohr radius a, = 
0.5292 x cm, and A = e = me = 1. In Eq. 6, I C ~  = & , ( 3 7 ~ ~ ) ~ / ~ .  K ,  = 

(3/7~)”~, Y, = (3/47~n)”~, and I = 4. Although not all the terms in Fo can be 
considered as definitely established, theories using them to describe the be- 
haviour of conduction electrons at a surface have been quite s u ~ c e s s f u l . ~ ~  

The inhomogeneity term, in (Vn)’, represents the first term of the density- 
gradient expansion of the kinetic energy functional. Comparing exact 
results for the linear potential model with results obtained from the gradient 
expansion, Ma and Sahni2’ concluded that the expansion converges well, 
but that the second-gradient term is required if good results are to be ob- 
tained for all electron densities corresponding to metals. To obtain good 
results using only the first-gradient term, one can use a value for I greater than 
$; values of I are given” as a function of electron density. Sahni and 
Gruenbaum,2’ in variational calculations of the electron density for solid 
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SURFACE TENSION OF LIQUID METALS 249 

metal surfaces, incorporated the exact results from the linear potential cal- 
culations and investigated several methods of approximating the kinetic 
energy functional. They concluded that the gradient expansion worked as 
well as other methods in producing agreement of measureable properties 
with experiment. The ion-electron pseudopotential was the Ashcroft form, 
and was found to be satisfactory. Alonso and Girafalco” have stated that 
one cannot reproduce density oscillations, such as the Friedel oscillations, 
by minimizing a functional with respect to electron density, as long as only 
a finite number of terms in the gradient expansion are used for the kinetic 
energy. A non-local approximation to exchange was discussed and used to 
discuss local-density approximations. 

In principle, the electron density for each ionic configuration r could be 
determined by minimizing the electronic energy Eo(n) = Fo(n) + xi F,(n, Ri) 
with respect to n. If the electron density profile function n involves one or 
more parameters t l k ,  we would demand 

aE0 - = 0, all k 
acrk 

with the normalization condition 

n dz = constant s 
(7) 

Condition (8) may imply a relation between the {a , } ,  or it may be a conse- 
quence, independent of ak, of the form of the function. 

The thermodynamic and electrical properties which interest us will always 
be given by an integral over ionic configurations. In such an integral, it is 
reasonable to expect that configurations differing substantially from the 
average will not contribute much. Thus, we will only consider choosing the 
best electronic distribution for the average ionic configuration. This means 
that for (7) we substitute 

-- - 0, all k a ( E J  
(9) 

where the brackets refer to an average of Eo over ionic configurations. 
We will consider a large surface of planar symmetry, enclosed between the 

planes z = - L (interior of the metal) and z = L (exterior), and with a 
transverse area A (Figure 1). The system contains N ions of valence 4 and 
hence of charge qe, where e = 1.602 x C, and a number of electrons, 
equal to N q  in the case of no external field. In the presence of an external 
field, the number of electrons will differ from N q  to provide screening of the 
external field. 
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250 J.-P. BADIALI, A. LEPAPE AND J. GOODISMAN 

Within the system there is a surface region, so that the intensive properties 
pass from those of the homogeneous metal in the region near z = - L, to 
those of the vapor near z = L. The vapor density is neglected, and the elec- 
tronic and ionic densities for the homogeneous metal are given by n, and 
ne/q respectively. We will assume that L is sufficiently large so that the one- 
particle ionic distribution p(”(z) approaches ne/4 for z = - L  and 0 for 
z = L, while the electron density approaches n, for z = - L  and 0 for z = L ;  
the electric charge density vanishes both at z = - L and z = L. The total 
electric field is to be equal to the external field, if any, for z = L, and is to 
vanish at  z = - L (perfect screening). 

In terms of the one-particle distribution, the total number of ions is: 
L 

N = A /-Lp(l)(z)dz 

while the number of electrons is 
L 

nT = A /-r(z)dz 

This means that 

where Eo is the external field. 

of the exponential form 
The ionic density profile or average ionic configuration will be taken to be 

The position of the ionic surface is represented by Y.  Such a non-oscillatory 
profile is consistent with the consensus of theory and experiment for most 
liquid surfaces. On the other hand, use of a similar form 

n(z )  = n,[1 - tea(’-*)], z < X 

, z 2  x (14) = L-uG - X) 
e2 

for the electrons leaves out the Friedel oscillations in the electronic density. 
We might include oscillations by modifying n ( z )  for z c X so that 

n = n,[1 - $ea(z-x)cos p(z - X)], z < x 
3 , z  2 x (15) = n,[+e - u(z - X) 
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SURFACE TENSION OF LIQUID METALS 25 1 

where the parameter 0, like a, is to be chosen to minimize the electronic 
energy according to the density functional theory. The calculations are 
more complicated than if B = 0, but most integrals can be ecaluated analytic- 
ally. Theoretically, j3 should be twice the Fermi momentum, or 

Ptheor = 2(3n2ne)”3 (16) 
However, the exponential decay of the amplitude of the oscillations with 
distance away from the surface is not in agreement with the actual behaviour 
(decaying as the inverse square). l 9  

With the forms ( 1  3)  and ( 1  5) ,  and X + L and Y + L large, we have simply 
An,( Y + L)q- for the number of ions Nand AnJX + L + P2/2ct(a2 + /Iz)] 
for n T ,  the number of electrons in the system. Therefore the external field 
determines the position of the electronic surface relative to the ionic accord- 
ing to (see Eq. 12): 

We consider as a variational parameter, whose effect is studied to in- 
vestigate the sensitivity of our results to the form of the electron density 
profile. The calculations of surface energy for /3 # 0, presented in the Appen- 
dix, show no large changes compared to = 0. This indicates our choice of 
electron density profile is not a major source of error. We put = 0 for the 
rest of the calculations presented in the body of this article. 

While the parameter(s) in the electron density profile are to be determined 
by minimization of the electronic energy, the single parameter 1 in the ionic 
density profile is not determined by our model. Evans and Kumarava- 
d i ~ e l , ” , ~ ~  using an exponential density profile and a local quasithermody- 
namic approach their liquid metal theory, suggested minimization of the 
Helmholtz free energy per unit area for this purpose. For their system of 
non-correlated point ions, Allen and Rice [7a] minimized the surface energy 
to obtain the density profile, which they found to be oscillatory. 

I l l  SURFACE TENSION AND SURFACE ENERGY 

In our thermodynamic theory, the independent variables are N (number of 
ions), T (temperature), V (volume), A, and the electrical variables. The 
number of electrons is determined by ( I  2) in terms of the other parameters. 

The excess superficial energy which we refer to, following common usage, 
as the surface energy, is the energy required to create an area A of surface 
by separation of a volume of homogeneous metal into two parts. The relation 
between this quantity and the surface energy obtained by application of the 
Gibbs-Helmholtz equation to the surface tension will be discussed below. 
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252 J.-P. BADIALI, A. LEPAPE AND J. GOODISMAN 

We consider the case of no external field. As reference system, we imagine a 
cylindrical volume of area (+)A and length 2(Y + L), containing ions at a 
density n,/q and electrons at a density n,. Separation of this system into two 
creates two surfaces, with total free surface area A .  The difference between 
the new energy and that of the reference system is USA,  where Us is the surface 
energy. 

The electrostatic energy of the reference system, which is electrically neutral 
at each point, is zero. Thus U S A  includes: the excess kinetic, exchange and 
correlation energies of the electrons; the total energy of inhomogeneity 
and electrostatic interaction ; and the excess pseudopotential and exclusion 
energies. We have then 

O(R, - Ir - r’ 1 + JLclz [dr’[n(z)p(’)(.z) - n,e(Y - z)n, 
4 

- 4“ 2 - L  dz /dr‘[p(’)(z)p(’)(z‘) - 

x [l - g(lr - r’l)]lr - r‘l-’ 

Here, 0 is the unit step function and the functional of the electron density 

where n(z) is for the average ionic configuration. The simplest assumption 
for the correlation function, g(r )  = 1 - 8(d - r), gives 

L 

us = S_?C?(~) -T(ne)e(Y - Z)I 

+ 1 dz Jdr’[n(z) - qp(’)(z)][n(z’) - qp(’)(z’)]lr - rl-’  

+ [-Id2 Jdr’[yn(z)p(’)(z‘) - n,’e(Y - z)O(R, - Ir - r’l)lr - r’l-’ 

- 

2 - L  

dz Jdr’[q2p(’)(z)p”’(z’) - n,’O(Y - .z)]O(d -Ir - rl)lr - r’1-l 
2 -L 

(20) 
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SURFACE TENSION OF LIQUID METALS 253 

The surface tension y is obtained by differentiating the Helmholtz free 
energy with respect to the area of the system, keeping all other external 
parameters constant: 

Only the configurational integral depends on A at constant N and T, so that 

where E = F,(n) + CF,(n ,  Ri) + CF,(Rij) .  The surface energy U s  could be 
defined by the Gibbs-Helmholz equation: 

Since the total energy U is d(PF)/dp,  we have also that 

us = (g) 
N, V ,  T ,  V o , E o  

We shall show below that U s  of Eq. 24 and U s  of Eq. 18 are identical. 
through the 

variational parameters which are chosen to minimize E for each ionic con- 
figuration, according to Eq. (9). The F ,  terms, being independent of the 
electron density, would not enter. Let F,(n)  be written as an integral over 
the volume of a functional f ( n ) ,  and F,(n, Ri) as the integral of n times 
V( I r - Ri I). Then the variational problem is 

The electron density depends on the ionic configuration 

Note that fdiffers fromfof (19) by including the interelectronic repulsion. 
In obtaining the expression for the surface tension, we use Green's scaled- 

coordinate method to carry out the differentiation in (22). The coordinates 
of each ion are written: 

xi = f i t i  yi = J A S ,  zi + L = VriA-'  (26) 
where ti, q i ,  and ii are to be maintained constant during the differentiation 
with respect to A .  Using asterisks to represent functions of scaled coor- 
dinates, 
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254 J.-P. BADIALI, A. LEPAPE A N D  J. GOODISMAN 

The two-body terms are like those appearing in the usual theories of surface 
tension : 

aR.. aR..(Zi + L)  
ar, 2~ az, A 
2- - 2 

1 a R . ’ x .  aR.. Y .  a R i j ( z j  + L) 
a x j 2 A  av, 2~ az, A 

+ 2’2 + v I - __ ~ 

( X i  - Xj)’ + (yi - q)’ - 2(2i  - Zj)’ 
A 2Rii 

The remaining terms in (aE*/aA) involve the electrons and are considered 
together. 

We have to take into account that n depends on A through the variational 
parameters ak, which depend on ionic configuration, as well as through the 
normalization condition (12). The region of integration for electrons also 
changes, so we put x = f i t ,  y = f i v ,  and z + L = VCA-’, just as in 
Eq. 26. 

av(lr - RJ)* 
aA [F: + F:(n, Ri) V(  Ir - RiI) + n c 

aA i 

1 alr - r’1-l 

aA 
+ - dT’n(r)n(r’) 

2 ‘s 
The next-to-last term is simply 

ax, aA 

(30) 
[(x - X,)Z + ( y  - yi )Z - 2(z - Zi)’] 

= JdmV‘( Ir - Ri l )  21r - RilA 

analogously to (28) and the last term in (29) is treated similarly. The change 
of n with A (v Eo constant) becomes (where p is the parameter assuring 
normalization) 
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SURFACE TENSION OF LIQUID METALS 155 

The last group of terms (xkxj) ,  inserted in the integral of Eq. (29), makes 
no contribution by virtue of Eq. (25). Therefore, 

(Xi - Xj)2  - 2(Zi - Zj)2 + ( K  - I ; )2  

N,Y,T.E i < j  2ARij 

(x - Xi)’ + ( y  - y i ) 2  - 2(2 - Zi)2 + 1 dznV’((r - Ril) 
i s 2Alr - R i J  

(x - x’)’ - ( z  - 2’)’ 

21r - r’13A 

(32) 

which is inserted into (27). 
On averaging over ionic configurations, the x and y directions become 

equivalent and the two-particle ionic distribution p c z )  enters the first group 
of terms. In the second, we assume that we can substitute, for the true n 
(parametrically dependent on ionic configuration), the electron density 
corresponding to the average ionic configuration, which we denote for now 
by ii. The averaging over r then introduces the one-particle ionic distribution 
p(’) ,  and, in the last group of terms, anlax and anlay can be dropped. Our 
surface tension now becomes 

y = .’[; /dRl dRzp( ’ ) (RlR2)F; (R12)R~~(X~2  - Z: , )  

(x - X,) ’  - (2 - Z1)2 

Alr - R,l 
+ I dr dR,fi(r)[p(’)(R,)V’( I r - R1 I) 

] + Idr[$ 
(x - X , ) 2  - ( 2  - Z , ) 2  

- n(R1) 2A Ir - Rl 13 

ai i2  + L an ap + /dR,p(’)(R,)V(lr - R21) aZ A + --) apaA (33) 

We now consider the effect of normalization. The value of p is chosen to 
ensure 

so that, with Eo and N constant, 
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Now suppose that p is a parameter which shifts the surface density profile, 
such as X in Eq. (15), so that aii/ap is -aii/az. Referring to the first group of 
terms as T, Eq. (36) becomes: 

The terms T, inserted in (29), make no contribution by virtue of (25). Separa- 
ting the functional f into r a n d  the interelectron repulsion, we have from 
(33) 

The expression for the surface tension, Eq. (37), was obtained from the 
definition of y as the derivative of the free energy of the system with surface 
area, keeping the volume, the number of ions, and the external electric field 
constant. Using Euler's theorem for the surface system (Figure l), we have 
for its free energy 

F =  p N -  p v  + yA. 

Now we consider, analogously to the excess superficial energy defined at 
the beginning of Section 111, the difference between the free energy of the 
system containing the surface and the free energy of a reference system. The 
reference system, of the same total area and volume as the surface system, 
contains homogeneous liquid metal from z = - L to z = Y,  and homogene- 
ous vapor from z = Y to z = I,. Using Euler's theorem for the homogeneous 
phases, we have 

Fs = F - (F" + F") = p N  - PI/ + y A  -(puN" + pV" + /." + pV") (38) 

Here, rn = metal, u = vapor; pressure p and chemical potential p are the 
same for all phases. Thus 

Fs = p ( N  - N" - N u )  + yA (39) 
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.ionic surface 
..electronic 

surface 

Since F and the free energies of the homogeneous phases obey the Gibbs- 
Helmholtz equation, 

u + U" + U" &E)",* = -? T 2  

According to (39), Fs is equal to yA if the dividing surface z = 2 is chosen so 
that N" + N u  is equal to N ,  i.e. 

N = A(Z + L)n, + A(L - Z)n, 

where nu is the ionic density in the vapor, which is neglected in our model. 
This is the choice made in our previous definition of U s  (Eq. (18)). Therefore 

or U s  = d(py)/dp, and we can identify Us with the surface energy obtained 
from the temperature dependence of the surface tension for zero external 
field. 
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IV CALCULATION OF SURFACE PROPERTIES FOR METALS 

For the purposes of calculation we further transform our expression (37) for 
the surface tension, to produce terms appearing in the expression for the 
surface energy, Eq. (20). In the first line of (37), we put: 

P(~)(R,R,) = p(1)(Z,)p(1)(22)g(R12) and F ;  = -q 1 2 .  

This does not include the hard-sphere repulsion, which must be treated 
separately as follows: 

2R-2 

The exponential, which represents 8, may be replaced by a step function, and 
its derivative by 6(R12 - d). AEter integrating the term in f by parts, we 
obtain from (37) 

P L  r 

The surface term from the integration by parts represents electrons in 
homogeneous metal ( z  = -L), which must be moved to the surface region 
as A increases maintaining volume and electron number. Being independent 
of rl, it may be written as the integral in Z1, over a length Nq/n,  A (which 
equals Y + L), of the energy density for homogeneous electron gas. 
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SURFACE TENSION OF LIQUID METALS 259 

Comparing the above equation with (20), we write the surface tension as: 

dR2(Y - Z,)[n(Z,) - qp(')(Z2)]R;2 (44) 

where the prime means differentiation with respect to R,, . An integration by 
parts has been performed on the last term of (43). 

To illustrate the use of the formulas we introduce the following assump- 
tions, which constitute the simplest models of the class we have developed. 
(1) The empty-core pseudopotential makes I/ = qR;2B(R12 - RJ. (2) For 
g we put 8(R12 - d) with d the hard-sphere diameter. Then the terms in 
surface energy and surface tension may be labelled as electronic, electro- 
static (Coulombic interactions between charged particles), exclusion (de- 
pending on d), and pseudopotential (depending on Rc). Inserting the profile 
of Eq. (13) for the ions and that of Eq. (14) for the electrons, we obtain the 
following expressions : 

n5/3 n4/3 n 
U:lectron = yelectron = - 1.6423 + 0.25037 5 + 0.006584 2 

c1 U U 
+ n, u 1112172 (45) 
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1 1  1 + - + - +  ___ - _ - _ - _  
a3 A3 d(cr + A) cr2 A2 6 

- - - -+>- -  
A(0r + A)’ crA2 ciz 1’ 6 Rc ”:I 1 + 

The parameters in this simplest model are the following: the electron 
density ne (known experimentally), the “width parameters” A and cr for the 
ionic and electronic density profiles, the pseudopotential core radius R, , 
and the hard-sphere diameter d. The parameter a will be determined by 
variational calculations. The values of R, will be those given by other authors. 
As we now show, the parameter d in the model may be determined, once 
R,  is chosen, by demanding that the model give the proper pressure for the 
homogeneous system; or it may be put equal to the “vacuum” values 
2R,. 

We calculate the pressure according to 

where the asterisk refers to the use of scaled coordinates in the differentia- 
tion: x = 7/’’35, y = L‘1/34-, etc. The electron density n, for the homogeneous 
system depends on V, since the constancy of N requires 

ane - nL? 
av V ’  
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A calculation similar to that for the surface tension gives 

261 

F(Rij)* + JdT*f(n)) 
aE* a 

+ & ( b T d T ’ f l r - r ’ l - l ) *  n2 + $ b r * n e T V ( l r - R i I ) *  

Ir - Ril 

R.. 1 
= 1 F’(Rij)$ + 7 / d . ( i ( n e )  - ne- 

i < j  

2 

- 5 JdT dz’IR - R’J-’ + dTne V’(Jr - RiJ)  ____ 6V S i  3v  

6V dR, d R 2  (R,  - R2 1 -  - - 3v / d R l n e  ~R2pc1)(R2)V’(RlZ)R12 

which leads to 

N k T  1 1 6f 
p = - 31/ /dRl dR2~pP‘2)(R1R2)F’(R12) - - V h R , ( f -  n -) 6n e 

1 

-A ..” /dRl,e-w/kT 
2 g2 

V 6V V e 

2nn:kT 
dR1 dR,[O(R, - R12)R;i + 6(R, - R l J ]  + 7 

- - N k T  __ -_ nf P R ,  dR2R;,’O(d - Rlz) - I /dR,(f--  n f) 
+ 2 

3v n2 s 39 

x /0adRR3r$) (53) 

For the simplest model, 

kTn,  2nn,2d2 - a! 2 7 4  
4 6 dne 3Pq2 

- f ( n e )  + n e -  + 2nn:R: + - d 3  p = - - -  (54) 

with 

0.03 1 
3kkn,5’3 + 51~~11:’~ + - af 

6 IZe 
f ( n 1 - n  -= - 2 -  

6ne 

The pressure p in (54) is to be 1 atmosphere (3.44 x am&;), which is 
negligible compared to the other terms since n, is several times 10-3/u:, 
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so that: 

( 5 5 )  
2.rrkTd3 + 2zR: + ~ 

zd2 kT 1.9142 0.24619 0.005167 -- 
3 --+n:!3--- q n e  nZl3 ne  2q2 

The last term being relatively unimportant, we may solve iteratively for d.  

V CALCULATIONS FOR THE ALKALI METALS 

We illustrate use of the formulas for the alkali metals just above their melting 
points. The densities used are from a Table given by Beer.24 Converted to 
ions per unit volume, they are given in Table I, along with the melting points 
and experimental surface tensions and surface energies. The pseudopotential 
core radii R,, also given in Table I, are those used by Kumaravadivel and 
Evans,' and generally represent an average of the values used by others. Two 
values are considered for the hard sphere diameter: d = 2R,, and d chosen 
(Eq. (55)) to give the correct pressure in the homogeneous phase. 

The procedure for determining the width parameter for the electronic 
distribution is as follows: for a given value of A, the surface energy Us is com- 
puted with different values of a, and the value which minimizes U s  is taken. 
The surface tension y is computed for each value of A, using the appropriate 
value of a. We expect y to vanish for small A (infinitely broad surface region) 
and, as A increases, increase. 

The results for Cs are given in Table I1 and Figure 2. We see that the proper 
behavior for A + 0 is found (provided that a is very carefully determined), as 
well as the maximum in y, which is too small to appear on our graph. How- 
ever, no minimum is found. The surface tension, which is quite unvarying 
from A = 1.5 on, is half the experimental value and the surface energy a bit 
high. The difference between the two quantities, which is T times the surface 
entropy, is much too large. The foregoing is when d is chosen from the pressure 
in the homogeneous phase; the choice d x 2R,, decreases y and Us by about 
10 per cent. 

For the metals of higher electron density, similar results are found (Table 
111), except that the maximum in y, already faint for Cs, has disappeared by 
the time Li is reached. The errors in y and Us become more important: the 
calculated surface tension is about half the experimental value in all cases, 
while the ratio of calculated surface energy to experimental increases as 
ne increases. The increase in y and U s  with electron density is correctly repro- 
duced. If d = 2R, is used, however, the results become unacceptable; surface 
tensions decrease with increasing electron density, and negative surface 
tensions appear (Table IV). We note that (a) the model is about the simplest 
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TABLE 11 

0. I 
0.2 
0.4 
0.7 

1 .o 
1.5 
2.0 
2.5 

Surface properties for cesium 

Resultsfor d=4.18217ai1  

Best c( y (dyn/cm) U” (dyn/cm) 

0.10029457 4.41 815.51 
0.202 199 8.87 416.65 
0.41 105 17.97 225.57 
0.66686 28.99 153.87 

0.78899 33.45 130.76 
0.86233 35.25 1 16.65 
0.88814 35.60 1 I 1.28 
0.89985 35.67 108.71 

Results for d = 2 Rc 

(dyn/cm) Us (dyn/cm) 

4.12 731.48 
8.28 373.5 1 

16.88 201.91 
27.36 137.52 

31.46 116.78 
32.92 104.10 
33.09 99.25 
33.07 96.92 

3.0 0.90610 35.69 107.29 33.03 95.63 
3.2 0.90780 35.69 106.89 33.02 95.27 
3.4 0.90921 35.69 106.56 33.00 94.97 
3.6 0.91037 35.68 106.29 32.99 94.72 

4.0 0.91215 35.68 105.86 32.97 94.33 
4.4 0.91351 35.67 105.53 32.95 94.04 
5.0 0.91493 35.67 105.19 32.92 93.72 
6.0 0.91644 35.66 104.82 32.90 93.39 

7.0 0.91732 35.65 104.60 32.88 93.19 
10.2 0.91859 35.64 104.30 32.86 92.91 
13.0 0.91909 35.63 104.17 32.85 92.80 
20.0 0.91947 35.63 104.07 32.84 92.71 

possible of the type we consider and (b) y and Us are each a sum of a number 
of positive and negative contributions, some of which are larger than y 
and Us themselves. The breakdown is shown in Table V, with A = 4ai  l ,  for 
all five metals. It is quite different from that of Allen and Rice [7a], who 
introduced an ad hoc “stabilization” potential to compensate for their use 
of point ions with no pseudopotential. The fact that y and Us change little 
as A increases past 2a;’ means that, when discussing the predictions of the 
model, we can take any 1 above 2a; ’. 

We may also calculate the difference of electrical potential between the 
inside and the outside of the metal, due to the difference between ct and A, 
which creates a dipole layer at the surface. An elementary calculation gives 

V(a3) - V(  - co) = - ( A - 2  - a-2 )  

which makes the potential difference in volts A V  = 341.71 volts x 
(A-’ - ct-’)n, when ne,  A and a are in atomic units. Potential differences 

(56) 
nee 

E 
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Y 
4c 

3c 

20 

IC 

I 

I I I I 1 I I 

7 

L 

7 

L 

US 
130 

2 0  

I10 

100 

TABLE Ill 

Calculated results for surface properties, d computed from Pressure" 

1 = 2a;' A = 3uo' 1 = 4u,' 

Metal y us P U' Y uc 
Li 141.4 1467.1 144.8 1368.1 146.3 1331.7 
Na 95.0 790.9 96.5 753.9 97.0 740.5 
K 56.1 381.9 56.7 369.5 56.8 365.1 
Rb 48.6 391.7 49.0 381.9 49.2 378.4 
cs 35.6 111.3 35.7 107.3 3S7 105.9 

a All results in dyn/cm. 
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TABLE IV 

Calculated results for surface properties, d = 2R, 

i. = 2a, ’ 1 = 3aa ‘ k = 40;’ 
Metal I’ U S  Y U b  Y (i” 

Li -50.0 426.3 -65.6 383.9 -72.3 367.5 
Na 4.1 347.2 0.2 325.6 -1.7 317.1 
K 21.7 222.7 20.7 213.9 20.2 210.8 
Rb 12.5 229.7 11.7 222.6 11.4 220.0 
c s  33.1 99.2 33.0 95.6 33.0 94.3 

a All results in dyn/cm. 

calculated in this way are shown in Table VI for the computations of Table 
IV: we again note the insensitivity to 1 in the range considered. Subtracting 
A V  from the chemical potential of the electrons gives the work function. The 
chemical potential p, may be calculated as the derivative ofthe bulk electronic 
energy density with respect to the electron number density, which gives (see 
Eq. 6) 
pe = i t ikn1/3 - 4K n 1 / 3  , - 0.07007 - 0.005167 In n, 

+ n,lr - r’1-I dz‘ - n,(r - r’I-’O(lr - r’I - R,)dz’ J J 
= 4.7854r1:’~ - 0.9847nil3 - 0.07007 - 0.005167 In n, + 27~Rf.n~ (57) 

These results are also given in Table VI. Combining the surface and bulk con- 
tributions for A = 4a; ’, we find electrochemical potentials (minus work func- 
tions) of - 2.89, - 2.48, - 2.06, - 1.93, and - 1.93 volts for the metals from Li 
to Cs. Experimental values for polycrystalline samples are - 3.1, - 2.7, -2.4, 
- 2.2, and - 2.1 r e spec t i~e ly ,~~  although the values for liquid metals may be 
somewhat different. Our agreement is thus quite reasonable (note that the 
interionic potential and pair distributions enter only indirectly in calculation 
of this property). It is interesting that the variations in bulk and surface 
contributions to p,, as one passes from Li to Cs, are larger than the variations 
in the sum. 

VI DISCUSSION 

We have presented a simple formalism for the treatment of surface properties 
of metals, with a view toward investigating the effect of external electric 
fields and studying the metal’s contribution to the electrochemical interface. 
In this formalism a density functional is used for the conduction electrons, 
while the ion cores are treated as actual particles, using pseudopotential 
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TABLE VI 
Electrochemical potenrials 

V(ffi) - V ( -  m), volts 

Metal I = 2a;l I = 3a;l 1 = 400' 
Chemical (bulk), 

contribution (volts) 

Li -2.9791 -3.0167 -3.0317 
Na - 2.0402 -- 2.0737 - 2.0869 
K - 1.2422 -- 1.2696 - 1.2801 
Rb - 1.3371 ~- 1.3578 - 1.3658 
c s  - 0.4805 ~- 0.4668 -0.4292 

0.1451 
-0.3883 
- 0.7794 
- 0.5663 
- 1.4970 

theory to justify such an approach. We have given formulas for surface 
tension, surface energy, and electrical properties of the surface, and illustra- 
ted their use by performing calculations for the alkali metals using the 
simplest models. The cancellation between large terms that contribute to 
surface properties means, of course, that a change in the way any contribu- 
tion is calculated can have a significant effect. However, using a more 
realistic assumption for the interionic correlation seems most important 
for several reasons. First, this is the largest term in U s  and y .  Second, the 
work function, which does not involve pf2)  and the interionic potential 
directly, comes out much more accurately than other properties. (In fact, 
we have studied the change in this quantity with external field using the 
present model, to show the contribution of the metal to double-layer capacit- 
ance.) As we mentioned in the Introduction, the interionic potential, 
even for the bulk metal, should have an oscillating part, but, even for the simple 
potential we have used, the step-function is quite a crude approximation for 
the correlation function, and should become worse as densities increase. Better 
correlation functions for bulk metal, like better potentials, are available. How- 
ever, the ion-ion repulsion is the main determiner of the ionic arrangement 
in bulk liquid,26 and Ashcroft and LeknerI6 showed that the correlation 
function for a hard-sphere model could be used, in conjunction with a good 
interionic potential, to produce good results for the resistivity. Indeed, we 

TABLE VII 
Effect of second parameter on energy 

Best c( Surf ace Surface 
u,.(c(;') I with /{ = 0 En. (dyn/cm) Best a and /{ En. (dyn/cm) 

0.0012341 4.0 0.91215 105.86 0.8827 0.275 I 105.82 
0.0012341 2.0 0.88814 111.28 0.8580 0.2645 11  1.24 
0.0012341 1.0 0.78899 130.76 0.7677 0.1421 130.75 
0.0065973 4.0 0.84294 1331.69 0.7827 0.3140 1330.04 
0.0065973 2.0 0.79771 1467.09 0.7 I30 0.3436 1462.54 
0.0065973 1.0 0.64484 1910.41 0.5348 0.3766 1889.61 5 
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have used hard-sphere correlation functions to estimate the correction to 
be added to Us, due to the changed g(r), keeping the interionic interaction 
potential unchanged. We estimate corrections of - 13 dyn/cm for Cs and 
- 600 dyn/cm for Li, clearly of the right size. More detailed calculations are 
in progress. 

Of course, use of bulk correlation functions to describe the surface is open 
to criticism, but other work seems to show the form ( 5 )  is not so bad for 
obtaining surface properties. The pseudo-ion theory of Evans and Kumarava- 
diveI:.* which obtained much better surface energies than we obtained for 
the alkali metals, used the assumption of Eq. (5), but with the experimental 
bulk liquid correlation function for g, and a more complicated, density- 
dependent interionic potential. (Other corrections were made as well.) 
Surface tensions could not be calculated in the context of this model, so 
the authors” turned to a thermodynamic perturbation theory, with further 
improvements in the two-particle distribution function. They determined 
the ion density profile by minimization of the free energy, and also found 
the ion-profile to be much sharper than the electron profile. However, in a 
Coulombic model such as ours, it is important to modify g to take into 
account the electroneutrality constraint in the surface.” 

The density functional used to describe the electron energy, as well as the 
electron-ion pseudopotential, could be changed, also without changing the 
basic structure of the model. In particular, a different correlation energy 
functional may be appropriate for liquid metal densities.28 Of course, one 
should maintain consistency by assuring that the pressure is correctly cal- 
culated for the bulk liquid. Use of density-dependent potentials probably 
necessitates introduction of additional parameters, and would take us out 
of the formalism developed here. We believe that improvements in some 
of the terms can give y in good agreement with experiment, which would 
validate the use of this kind of model to describe polarization effects, such as 
are important in the charged electrochemical interface. 
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Appendix 

In this appendix we show the effect of introducing oscillations into the elec- 
tron density profile, by using the two-parameter form of Eq. (15). At the 
same time, we give explicit formulas for some of the terms entering the surface 
energy expression. In some cases, use of the identity 

cos Pz = +(eiflz + e-iflz)  

allows easy deduction of expressions involving p from expressions with only 
c1 (non-oscillating profile). All the expressions are independent of the sign 
of P, so that P = D must be a stationary value for the energy. 

Since the electronic terms are not linear in n(z), their calculation is not 
so simple. Using the binomial expansion, we find for the kinetic energy 
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where 

can be evaluated in closed form. For no external field, X = p2/2u(az + /Iz) 
+ Y. Similarly, the exchange energy is 

and the correlation energy, after some algebra, is 

+ 0.010333ne In n,) 

0.12980 1 n, 0.0 103 3 3n, 0.010333ne cr 
2 cr2 + p 2  

- (In 2 + 1) - + 2u 2cr 

0.010333ne .f (k  i k 2 ) !  0.010333ne In n, 
+ fl  k = 2  -Ik(;) + 2a 

The energy of inhomogeneity can also be evaluated as an infinite series, but 
the terms are more complicated in form than those encountered above. We 
have used an extrapolation procedure to estimate the sum from the first 
two terms. 

The electrostatic energy per unit area for a neutral system (no external 
field) is given by 

m (0 

E e s  = -n J- J-adz’[n(z) - p(z)][n(z’) - ~ ( ~ ’ 1 1  I Z  - z ’ I  

The electron-ion pseudopotential term, to be added to the electrostatic 
energy, is calculated as: 

and leads to a rather complicated algebraic expression. The exclusion part 
of the ion-ion term, to be subtracted from the electrostatic energy, may be 
obtained from the pseudo-potential term by replacing n by p ( ’ )  and R,  by d, 
and multiplying by 3. 
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We have performed calculations for the two systems Cs and Li for /? # 0 
and compared with results for fi = 0. Several values of 13. were considered for 
each. In every case, we have found the minimum in Us with respect to a and 
p simultaneously. For Cs, the use of p gives a negligible change, even though 
the best a for p = 0 differs appreciably for the best c1 when /? # 0. In the 
case of Li, the changes on allowing p to vary are still quite small in relative 
terms (tenths of a per cent), but noticeable in absolute terms (21 dyne/cm for 
13. = 1). The actual values of p are quite different from those appropriate to 
Friedel oscillations. 
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